
April 26, 2021

Dr. Florian Markowetz
Cancer Research UK Cambridge Institute
Li Ka Shing Centre
Robinson Way
Cambridge, CB2 0RE, UK

Dr. Donna K. Slonim
Department of Computer Science
Tufts University
Medford, MA 02155

Dear Dr. Markowetz and Dr. Slonim,

Thank you for the invitation to respond to reviewer critiques for our article titled “Improved 
prediction of smoking status via isoform-aware RNA-seq deep learning models” to be 
considered for publication as an original research article. We appreciate the thoughtful critiques 
of the reviewers, and we have conducted new analyses and made changes to the text of the 
article as described in detail below. These changes have strengthened the manuscript, and we 
hope that you will find it suitable for publication in PLoS Computational Biology.

In this article, using blood RNA-seq data from 2,557 subjects in the COPDGene Study, we 
demonstrate for the first time how isoform variability acts as an important source of latent 
information in RNA-seq data that improves the accuracy of prediction models for current 
smoking status. This manuscript makes a strong case for encoding biological information into a 
deep learning model, and it provides comprehensive experimental results on datasets of large 
sample size.

Dr. Peter J. Castaldi is the corresponding author for this manuscript. His telephone number is 
617-636-7359, and his email is peter.castaldi@channing.harvard.edu. The mailing address is: 
Channing Division of Network Medicine/Brigham and Women’s Hospital/181 Longwood 
Avenue/Boston, MA 02115.

We appreciate your consideration of this manuscript.
Sincerely,

Peter J. Castaldi, MD, MSc
Assistant Professor of Medicine
Channing Division of Network Medicine
Brigham and Women’s Hospital
Harvard Medical School
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Reviewer 1
Major points:
1) The current introduction does little to frame the work’s methodological contributions
and innovations with respect to the existing literature on deep learning applications for
computational biology. This is unfortunate due to the apparent novelty of the isoform
map layer and other important contributions. Most of the introduction rehashes the
authors’ previous contributions to the field of transcriptomics analysis, or references
specific biological mechanisms (e.g. T-cell activation) relevant to their data that are
mentioned nowhere else in the paper. It would be appropriate to have at least one
reference and sentence mentioning deep learning for computational biology in specific
(e.g. one of the many reviews out there, such as dx.doi.org/10.1098/rsif.2017.0387 or
another similar review). To a lesser extent, it may also be worth noting the several
previous applications of deep learning to splicing and isoforms (e.g. most notably
dx.doi.org/10.1126/science.1254806 and www.nature.com/articles/s41592-019-0351-9),
although the focuses of such works have been different from this one’s.

Author response:
We agree that more thorough discussion of relevant background literature would benefit the
introduction, and we have accordingly added the text below.

Introduction (lines 18-36)
High throughput measurements of gene expression in biological samples have been shown to
capture information relevant to complex biological processes such as cell cycle [PMID:
10963673], stress response [PMID: 9843981], and medical disease states [PMID: 22447773].
Gene expression-based multigene predictive models have achieved a level of performance that
has resulted in their regular use in medical decision making, most notably in early stage breast
cancer [PMID: 15591335], but this level of precision has not yet been attained in many other
areas of clinical practice. More recent research has applied neural networks to gene expression
data in biomedical domains [PMID: 29618526], achieving superior performance relative to other
machine learning methods in some cases [PMID: 31825821], though this is not a universal
finding [PMID: 32197580]. While gene expression microarrays were first used for genomewide
transcriptomics profiling, massively parallel high-throughput RNA sequencing (RNA-seq) is now
the standard, and one of the benefits of RNA-seq is that it can directly measure exon expression
and detect junctional reads (i.e. RNA-seq reads spanning exons) which allows for estimation of
transcript isoforms. It has been shown that the additional information that RNA-seq provides on
alternative splicing allows for more sensitive detection of transcriptomic differences between
cancer subtypes, but this information did not necessarily lead to improved prediction of clinical
outcomes [PMID: 26109056], suggesting that there may be latent information in RNA-seq data
related to splicing that may require novel modeling approaches to better utilize this information.

2) Although the transcriptomic data for the manuscript has been uploaded to GEO, I
could not find the list of specific gene/exon/isoform covariates that were used in the
models. While the list of 1,270 genes is readily available in Huan et al., the others are not.
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The authors do give the version of ENSEMBL that they used, and some vague
instructions on how to derive and filter the isoforms and exons. However, it would
behoove the authors to also include the exon and isoform definitions themselves as
supplementary data. At present the reproducibility of their entire paper hinges entirely on
this point, as well as on Biomart’s continued support and availability of old releases.
Nevertheless, even if one acquires the correct GTF and performs the procedures in the
methods, there is no way to verify that the resultant sets and definitions exactly match
the ones used in the paper. Ideally, the authors would also include the code used to
derive the exon definitions and reproduce their paper and archive it publicly (e.g. on
Zenodo or elsewhere).

Author response:
We agree that it is important to include the exon and isoform definitions, as well as the code to
derive the exon definitions. We have uploaded these files to
https://github.com/KingSpencer/COPD-IsoformMap accordingly. Specifically:

- The code and instructions to derive the exon and isoform definitions
- https://github.com/KingSpencer/COPD-IsoformMap/blob/main/deeplearning_gen

eAnnotation.html (Please download this file and view using your browser)
- The code to reproduce our paper

- https://github.com/KingSpencer/COPD-IsoformMap
- Files containing the list of genes, isoforms, exons

- https://github.com/KingSpencer/COPD-IsoformMap/tree/main/mapping_data
- Files containing gene-exon, isoform-exon mapping

- Gene-exon:https://drive.google.com/file/d/11qG9uAmLuXgL-x3HKR8jRXfUoPXLI
SkF/view?usp=sharing

- Isoform-exon:https://drive.google.com/file/d/1jzu9uXVIheKc69kqCp08Kx3AEXdO
AWDd/view?usp=sharing

Moreover, we have added essential information about the software artifacts in our manuscript:

Materials and methods (lines 129-131)
All network definitions, network weights and code, as well as additional files required for
reproducing our experiment results are available at
https://github.com/KingSpencer/COPD-IsoformMap

3) I could not find a full description of the network architecture used for each set of
covariates. This is critical to understanding the paper, and it is incomplete without it. The
authors have also left out the learned weights for their neural network model, as well as
the code used for their model. These software artifacts are essential to reproducing and
understanding this paper, since subtle implementation differences can lead to drastically
different outcomes.
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Author response:
To address this concern, we have added the full description of the network architectures  added
in the manuscript in Table 4.

Moreover, as we have responded to the reviewer’s major comment 2), we have created a
GitHub repository containing all essential software artifacts:
https://github.com/KingSpencer/COPD-IsoformMap

To be specific, the network definitions are in:
https://github.com/KingSpencer/COPD-IsoformMap/tree/main/utils
Due to the file size, we can only provide a link on github containing the network weights. For
your information, the actual link is provided here:
https://drive.google.com/file/d/1XHQXM9cA1IX2jZVp5Hp6LzOCZEihqi9y/view?usp=sharing

4) The discussion of cotinine and the model’s applicability has a few issues. For 
instance, the authors mention that the model could be used in scenarios where 
transcriptomic data are available, but cotinine measurements are not. The authors also 
state that their model performs worse than cotinine measurements for classifying 
smoking status. However, this is merely assumed based on cotinine’s performance as a 
predictor on entirely different datasets. It would be more accurate for the authors to 
instead state that cotinine measurements are known to be a strong predictor of smoking 
status, but it is unknown how their model will compare to them. Clearly, this is not ideal. 
Thus, if there exists a dataset of paired cotinine and RNA-seq expression data, then 
evaluation on said dataset with the author’s model seems like a needed addition.

Author response:
We appreciate this excellent suggestion from the reviewer. Plasma metabolite data is available 
for a subset of subjects from COPDGene. We obtained these data and compared the 
discriminative performance of cotinine and the exon model using the isoform map layer with 
feature selection in 106 individuals from the test set. Interestingly, the exon model clearly
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outperforms plasma cotinine in these data, which we have described in updated text in the 
Materials and methods, Results and Discussion sections.

Materials and methods (lines 181-186)
Cotinine measurements were obtained from plasma through metabolomic profiling using the 
Metabolon Global Metabolomics Platform (Durham, NC, USA) . The data were further 
normalized to remove batch effects. Samples with undetectable cotinine levels were assigned a 
value of zero. COPDGene metabolomic data is available at the NIH Common Fund’s National 
Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,
https://www.metabolomicsworkbench.org (Study ID ST001443) .

Results (lines 242-250)
Cotinine is a metabolite of nicotine and the most commonly used biomarker for current smoking 
status. Out of 513 subjects in the test dataset, 106 had plasma metabolite measurements 
available for analysis in which we could compare the performance of predicted smoking status 
from the exon IML-GTF FSL model to that of plasma cotinine values. Interestingly, in these data 
the predictions from the exon-level model significantly outperformed plasma cotinine (DeLong p-
value = 0.01, Figure 5), and the distribution of cotinine levels and exon predicted values in 
current and former smokers is shown in Supplemental Figures S1 and S2.

Discussion (lines 317-320)
In our dataset, predictions from exon expression using an isoform mapping layer achieved a 
sensitivity of 83% with a specificity of 89%, and when compared directly to plasma cotinine 
levels in a subset of subjects from COPDGene, our exon expression predictive model 
significantly outperformed cotinine.
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5) It appears that they normalized their training/validation/testing data using the trimmed 
mean of M values (TMM) implementation in the edgeR library. However, since the authors 
have not included their source code, it is not immediately obvious which samples were 
chosen as reference samples for the normalization step. This turns out to be critical. If 
the reference sample was included in the validation or testing data, then it represents a 
leakage of test set information and could lead to inflated test performance estimates. It is 
entirely possible that this is not the case however. Hopefully, the authors can clear up 
this confusion. In general, an evaluation on additional RNA-seq data from another cohort 
would more convincingly demonstrate the model’s ability to generalize beyond the 
COPDGene cohort and RNA-seq batches.

Author response:
To address this issue we re-normalized our data using upper-quartile normalization that 
computes self-contained normalization factors without relying on a single reference sample, and 
we repeated all of our analyses in this re-normalized data. As can be seen in Supplemental 
Tables S1 and S2, our results are consistent using both TMM and upper-quartile normalization, 
indicating that the performance of our models is robust to the choice of normalization methods 
and is not subject to leakage of information through the normalization procedure.

We recognize the importance of replication in another cohort, but unfortunately we could not 
identify a suitable independent replication cohort with available smoking data and an RNA-seq 
library prep protocol that matches the one used in this COPDGene dataset (i.e. PaxGene RNA 
extraction and total RNA preparation with globin reduction, not the more standard
polyA-selection). The difference between total RNA preparation (i.e. ribosomal reduction only) 
and poly-A selection has previously been shown to have a significant impact on the identified 
RNA species and expression profiles [PMIDs 20688152].

We feel that our stringent test and training design and the large size of our test data are a 
strength of this study that provide a good level of confidence in the validity of these results, but 
to clarify the critical importance of future work to develop models that may be translatable to 
clinical practice we added a sentence to the Discussion emphasizing the importance of 
independent replication. We hope to address this issue in more depth in future work when RNA-
seq data from other large comparable studies, such as SPIROMICS, are publicly available.

Discussion (lines 334-336)
While our models performed well in held-out test data, further validation and replication of these 
results in other cohorts with similar RNA isolation and sequencing protocols is necessary prior to 
clinical translation.
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6) Does inclusion of MUC1 have a significant effect on the model performance? I realize
that it has a low abundance, but that does not necessarily mean that it is irrelevant or
would not influence the model performance in a significant way. At present, since MUC1
was not included in their Beineke-based model, it does not seem like there has been a
proper evaluation of the original Beineke model. Along those lines, are any or all of the
other four genes from the Beineke model included in the larger model? If so, how does
the model perform when these genes and correlated genes are removed? It would be
useful to know how critical these five genes are to the prediction of smoking status in
general, and how significant the additional genes are.

Author response:
a. To address the first concern, we include MUC1 in our analysis and repeat the same analysis
on the Beineke-based models, and we have added all results in Supplemental Table S1. For
your convenience, the original Table 2 containing results without MUC1 is also copied here.

We have also added text descriptions in the Supplementary material accordingly:

Supplementary material (line 10-12)
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Despite the low level expression of MUC1, we added MUC1 to the set of genes, and the
corresponding isoform and exon features for completeness. The results in Supplemental Table
S1 are close to the results shown in our main text for all exon based models.

b. All the four genes from the Beineke model are included in the larger model. To address the 
second concern, we remove the 4 other genes as well as correlated genes (correlation 
coefficient >= 0.4) in our original dataset (TMM normalized) with a larger feature set. The result 
is shown in Supplemental Table S3. We have also added text descriptions accordingly:

Supplementary material (line 15-22)
To assess the importance of the genes used in the Beineke model, we remove these  genes 
together with their correlated genes (with correlation coefficient >= 0.4) from the larger feature 
set of 1079 genes, resulting in 1020 uncorrelated genes. We use the base deep learning model 
for gene input. The final result is shown in Supplemental Table S3. Comparing the test AUC
(0.900 versus 0.856),  we can see that removing these genes and their correlated genes indeed 
results in a decrease in performance. However, based on the information contained within the 
remaining uncorrelated genes, our model is able to give reasonable predictive results.
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7) Why did the authors not consider including exon/isoform annotations from additional
curated sources such as GENCODE as others have done? The list of exons and isoforms
in ENSEMBL is known to be incomplete (e.g. as mentioned in
https://pubmed.ncbi.nlm.nih.gov/28968689/).

Author response:
Our understanding is that the correspondence between Ensembl and GENCODE has been
established since GENCODE version 3c (equivalent to Ensembl 56) [PMID: 25765860]. Per the
Ensembl FAQs (https://useast.ensembl.org/Help/Faq?id=303), the default human and mouse
gene sets in the Ensembl browser are provided to GENCODE as the current version. And per
the GENCODE FAQs (https://www.gencodegenes.org/pages/faq.html), there is now essentially
no difference between the GENCODE and ENSEMBL GTFs. To verify this critical point we
compared the Ensembl GTF (release 94) used in our analysis to the corresponding GENCODE
GTF (release 29), and we confirmed the correspondence between these two curation resources
(see
https://github.com/KingSpencer/COPD-IsoformMap/blob/main/deeplearning_geneAnnotation.ht
ml ).

8) Although the reasoning for the Isoform Mapping Layer is obvious, the motivation for
the Feature Selection Layer could be made clearer. At present, it is unclear how the
authors conceived of the FSL, or why they think it improved model performance.

Author response:
Thanks for this constructive suggestion. We have made the motivation for the FSL clearer in our
manuscript:

Materials and methods: (line 158-163)
To enhance interpretability, we included in some models a Feature Selection Layer (FSL) that
associates every input feature with a non-negative learnable weight using an L1 constraint and
outputs a reweighted feature vector of the same size as the input feature vector. Since the
weights are non-negative, they can be considered to represent each feature’s importance with
respect to smoking status prediction, and the L1 constraint is meant to improve the
generalizability of the model.
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9) The model is interesting and there are relevant methodological innovations in this 
paper, but the subsequent analysis of the trained model and results could be improved. 
Importantly, this paper is missing an in-depth analysis that would hint at or suggest 
novel biology or new avenues for future investigation. Thus, its biological relevance 
could be strengthened. Given the authors' expertise in the biological aspects of this 
paper, I think this could be easily remedied. However, its current focus is mostly on 
machine learning. For instance, it would be interesting to see a more in-depth 
investigation of the trained models using one of the many interpretation algorithms (e.g. 
github.com/marcoancona/DeepExplain , github.com/slundberg/shap , and others) to 
identify which exons, genes, or isoforms proved most important to the algorithm’s 
classification decisions. This might help explain the otherwise-opaque decisions of their 
neural network model, and improve readers’ trust and confidence in the algorithm 
described. Without a more in-depth exploration of the model itself, this work comes 
across more as a computational improvement than one focused on both computational 
and biological aspects.

Author response:
We agree that model interpretation is vital and could add more biological relevance, and we 
appreciate the authors suggestion to consider the DeepExplain framework. To strengthen the 
paper, we used DeepExplain with saliency maps to generate feature importance scores for 
19,027 exons. Moreover, we added a section called Model interpretation in the manuscript to 
show our analysis, with new figures and tables. The corresponding modifications in our 
manuscript are as follows:

Materials and methods: (line 175-179)
Gene set functional enrichment analysis was performed for genes ranked in the top 20% of 
feature importance scores generated by the DeepExplain [20] framework with saliency maps
[21]. We used the TopGO package [22] to compute the gene set enrichment p-values for Gene 
Ontology pathways using the 'weight01' algorithm with Fisher's exact test statistic.

Results: (line 251-260)
Model interpretation:
We explored the interpretation of our best performing model, (the Exon, IML-GTF, FSL model), 
and we generated corresponding feature importance scores for each exon using the 
DeepExplain [20] framework with saliency maps [21]. 48.5% of exons had non-zero scores, and 
the distribution of the non-zero scores was bimodal (Supplemental Figure S3). We selected the 
exons in the top 20% of saliency scores for gene pathway enrichment  analysis using the 
TopGO method [22] with the 1,079 analyzed genes as the background for comparison, and 43 
Gene Ontology pathways had nominally significant p-values with the most enriched pathways 
related to GTPase activity and protein ubiquitination/degradation. The top 10 pathways are 
shown in Table 5.
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10) It is presently unclear how long each model configuration was trained for. The
authors only mention measuring cross-validated performance. However, it is generally
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common to train a model for several epochs on the available data before the optimal
weights are identified. Did they use any early stopping? The authors should also mention
in the methods section what GPUs they used to train their models, and how long the
training process took.

Author response:
Thanks for pointing out this issue. We have added corresponding training details in the
manuscript:

Materials and methods: (line 125-126)
We employ the early stopping strategy to get the best performing model on the validation set.

Materials and methods: (line 132-135)
All experiments are conducted on a single NVIDIA GTX 1080Ti GPU. The training process
related to Beineke models ranges from 13 seconds to 17 seconds for 40 epochs. The training
process related to a larger feature set ranges from 58 seconds (the base model) to 252 seconds
(model with IML and FSL) for 40 epochs.

11) The figures currently appear to be rather low resolution. It would greatly improve their
readability if the authors uploaded higher resolution versions of them.

Author response:
We have generated figures of higher resolution, please see the newly submitted figure files.

Minor Points:
1) In the abstract, model performance is referred to in terms of the AUC, but it is not
immediately obvious what curve they are referring to. It is only when one finally sees
Figure 1 that AUC is revealed to be the area under the receiver operating characteristic.
Since there are other relevant metrics in this domain (e.g. AUPRC), the authors should
make it clear that they are referring to the AUROC.

Author response:
We have made it clear in the abstract that we are referring to AUROC (Abstract, line 11-12).

2) The authors should write out “RNA integrity number (RIN)” on first usage of “RIN”.
We have made the corresponding change in our manuscript (Materials and methods, line 67).

3) The authors should indicate what parameter settings were used with the STAR aligner.

Author response:
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We have provided STAR parameter settings in our manuscript:

Materials and methods: (line 71-77)
We used these arguments for the first pass: STAR --runThreadN 8 --outSAMunmapped Within
--outSAMstrandField intronMotif --outSJfilterReads Unique --outSJfilterCountUniqueMin 100 1 1
1. For the second pass, we provided splice junctions from the first pass with these additional
arguments: --outSAMtype BAM SortedByCoordinate --limitSjdbInsertNsj 10000000
--chimSegmentMin 10 --sjdbFileChrStartEnd SJ.out.tab.

4) In the layer-by-layer architecture selection approach, did the authors retain the weights
for early layers when they added subsequent layers, or were the weights for these layers
randomly reinitialized?
Author response:
We made this confusion clear in our manuscript:

Materials and methods: (line 142-144)
Note that we reinitialize the weights of the previous layers when searching for the current layer.

5) The authors mention trying a fully connected exon-to-isoform mapping layer, and that
it did not attain a suitable loss despite the possible configurations for this network
subsuming the set of those for the non-fully-connected approach that did work. Why did
they not try a gene-level mapping layer as well, where exons are connected to the genes
they are associated with?

Author response:
We added additional experiments with a gene-level mapping layer, called Gene Map Layer
(GML) and showed the corresponding result as additional rows in Table 2 and 3 respectively.
We can see that no improvement from the GML could be observed compared with the Exon
Base model.

We also updated the corresponding text in our manuscript:

Materials and methods: (line 155-157)
Analogously, we can devise an isoform-to-gene mapping layer, where exons are connected to
the genes they are associated with, in the same way. We call it Gene Map Layer (GML).

Results: (line 239-241)
However, there was no improvement from the Gene Map Layer or from providing exon and
isoform quantifications directly to the Elastic Net model without any exon-to-isoform relationship
information.
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6) I see no serious issues with the author’s network architecture selection method, but I
do wonder if it could have been improved. Why was a layer-by-layer approach used for
model selection rather than a simultaneous search over a joined space of all layer
configurations and counts (i.e. via neural architecture search, or sequential model-based
optimization, etc.)? There is extensive work on the latter, and neural architecture search
methods have repeatedly outperformed manually-designed networks and more informal
search procedures (e.g. see https://arxiv.org/abs/1908.00709 for more details). This is
more of a question of interest than a criticism of their work, so the authors need not
address this if they are short on time.

Author response:
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This is an excellent point, however, neural architecture search is computationally expensive and
out of the scope of the research objective of this work. It will be interesting to add this analysis in
our future work.
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Reviewer 2
1) The model, particularly the deep net with the larger set of features, could actually be 
picking up on features that are directly associated with covariates (e.g., age, sex, BMI), 
which could then have associations with smoking status. In other words, the model may 
be predicting these covariates, not smoking status directly, which is dangerous when 
applying the model to other populations. The authors need to show that the model is 
truly learning expression signatures that are directly related to smoking, and not these 
covariates.

Author response:
We appreciate the reviewer’s point, which is that our prediction models might be predicting key 
demographic covariates rather than smoking status directly, potentially jeopardizing the 
generalization to other populations with different demographic characteristics. To evaluate this, 
we constructed gene, exon, and isoform datasets in which the effects of age, sex, and BMI had 
been regressed out of the count data. In new experiments training models on these data, we 
observe a decrease in the predictive performance of these models (AUC for the exon IML-FS 
model decreased from 0.94 to 0.91), but this difference was not statistically significant (DeLong 
p-value = 0.09). This analysis suggests our models’ performance is not dependent on these 
demographic variables. These results have been included as Supplemental Table S5, and we 
added a section to the results which is included below.

Results (lines 261-270)
To test whether the high performance of the RNA-seq models might be tied to specific 
demographic characteristics of the COPDGene study population such as age, sex, or body 
mass index, we fitted a linear model of the expression data using these demographic covariates 
together with smoking status as explanatory variables, and generated an adjusted version of the 
expression data by removing the effects of these covariates while retaining the main effect from 
smoking. We observed in the adjusted expression data a small but non-significant decrease in 
predictive performance for the exon-level model (AUC 0.91 versus 0.94, DeLong p-value = 
0.09). These results are reported in Supplemental Table S5.
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2) Related to 1, the authors do not characterized the features that the learned models are
picking up on and what biology these might suggest with respect to smoking status. For
a paper to PLoS CompBio, I would expect more characterization of the molecular biology.

Author response:
Thanks for pointing this out. We agree that characterizing the features learned by the models
are important. And this point coincides with Reviewer 1’s major point 9).
We have conducted gene set functional enrichment analysis for genes ranked by feature
importance scores generated by DeepExplain framework with saliency maps, using the TopGO
method. Please see the corresponding response to Reviewer 1’s major point 9).

3) I'm not fully convinced that the deep net is outperforming a simple logistic regression
model with similar features. In Table 3, I believe the "Elastic Net" model is a logistic
regression model. If this model is also given isoform abundances (i.e., Exon + Isoform,
Elastic Net), what is the performance? The IML layer is essentially giving isoform level
information to the deep net, so for a fair comparison, this information should also be
given to the logistic regression model. One really needs to show a big gain in
performance with a deep net over a simpler model to justify its use, and I am not seeing
such a difference here.

Author response:
We agree that a more fair comparison should be made by providing the logistic regression
model with the isoform level information. In order to give the logistic regression model both exon
and isoform information, we concatenate the exon and isoform feature into a single feature
vector, and use that as the input of the logistic regression model. The result is shown as an
additional row in Table 3. It seems that adding isoform features to the logistic regression model
made the final test AUC worse, from 0.903 to 0.884. A possible explanation is that the logistic
regression model is not able to take advantage of the additional exon-isoform mapping
information while suffering from the extra collinearity introduced by isoform data.

We have also added additional text in our manuscript accordingly:

Results: (line 239-241)
However, there was no improvement from the Gene Map Layer or from providing exon and
isoform quantifications directly to the Elastic Net model without any exon-to-isoform relationship
information.
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4) In the authors' previous study [3], they identified differentially expressed exons (while
taking into account covariates!) associated with smoking status. Why are those not used
in this study?

Author response:
Since we wanted to evaluate our models in test set data from COPDGene, we did not want to
introduce bias by selecting genes that had been identified in previous analyses of these data.
Thus, we chose to not make use of information from our previous differential expression
analysis, and we instead limited our analysis to genes identified from the previous study by
Huan et al., which was entirely independent of the data used to train and test our models.
Please also see our response to comment 1) in which we describe the result of new
experiments to better assess the impact of key covariates on the performance of these
predictive models.
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